定积分公式区间再现证明(必备8篇)

投稿:小范

定积分公式区间再现证明 第1篇

(四川省大学生数学竞赛试题, 2010 年;第五届全国大学生数学竞赛试题,2013 年)

计算定积分 \int_{-\pi}^{\pi} \frac{x \sin x \cdot \arctan \mathrm{e}^{x}}{1+\cos ^{2} x} \mathrm{d} x .\\

解:a=-\pi, b=\pi, f(x)=\frac{x \sin x}{1+\cos ^{2} x}, g(x)=\arctan \mathrm{e}^{x},\\ 则有 f(-x)=f(x), g(-x)=\arctan \mathrm{e}^{-x}=\arctan \frac{1}{\mathrm{e}^{x}},\\ 由于

g(x)+g(-x)=\arctan \mathrm{e}^{x}+\arctan \frac{1}{\mathrm{e}^{x}}=\frac{\pi}{2} \\

\int_{-\pi}^{\pi} \frac{x \sin x \arctan \mathrm{e}^{x}}{1+\cos ^{2} x} \mathrm{d} x=\frac{\pi}{4} \int_{-\pi}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} \mathrm{d} x=\frac{\pi}{2} \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} \mathrm{d} x \\

再次取 a=0, b=\pi, f(x)=\frac{\sin x}{1+\cos ^{2} x}, g(x)=x,\\ 则有 f(\pi-x)=f(x), g(x)+g(\pi-x)=\pi,\\

\begin{aligned} \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} \mathrm{d} x &=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} \mathrm{d} x=-\frac{\pi}{2} \int_{0}^{\pi} \frac{\mathrm{d} \cos x}{1+\cos ^{2} x} \\ &=-\left.\frac{\pi}{2} \arctan \cos x\right|_{0} ^{\pi}=\frac{\pi^{2}}{4} \end{aligned} \\

\int_{-\pi}^{\pi} \frac{x \sin x \arctan \mathrm{e}^{x}}{1+\cos ^{2} x} \mathrm{d} x=\frac{\pi^{3}}{8} \\

定积分公式区间再现证明 第2篇

(第四十八届美国大学生数学竞赛试题 (\mathrm{B}-1), 1987 年) 计算 \int_{2}^{4} \frac{\sqrt{\ln (9-x)}}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}} \mathrm{d} x.\\

解: 取 a=2, b=4, f(x)=1, g(x)=\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}},\\ 则有

f(6-x)=f(x), \quad g(6-x)=\frac{\sqrt{\ln (x+3)}}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}, \quad g(x)+g(6-x)=1 \\

故由区间再现公式,可得

\int_{2}^{4} \frac{\sqrt{\ln (9-x)}}{\sqrt{\ln (9-x)}+\sqrt{\ln (3+x)}} \mathrm{d} x=\frac{1}{2} \int_{2}^{4} \mathrm{d} x=1 \\

定积分公式区间再现证明 第3篇

(西安交通大学高等数学竞赛试题, _ 年)

\int_{0}^{\pi} \frac{x|\sin x \cos x|}{1+\sin ^{4} x} \mathrm{d} x \\

解:取 a=0, b=\pi, f(x)=\frac{|\sin x \cos x|}{1+\sin ^{4} x}, g(x)=x, 则有 f(\pi-x)=f(x), g(x)+g(\pi-x)=\pi\\

\int_{0}^{\pi} \frac{x|\sin x \cos x|}{1+\sin ^{4} x} \mathrm{d} x=\frac{\pi}{2} \int_{0}^{\pi} \frac{|\sin x \cos x|}{1+\sin ^{4} x} \mathrm{d} x \\

\begin{aligned} \int_{0}^{\pi} \frac{|\sin x \cos x|}{1+\sin ^{4} x} \mathrm{d} x &=\int_{0}^{\frac{\pi}{2}} \frac{|\sin x \cos x|}{1+\sin ^{4} x} \mathrm{d} x+\int_{\frac{\pi}{2}}^{\pi} \frac{|\sin x \cos x|}{1+\sin ^{4} x} \mathrm{d} x \\ &=\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1+\sin ^{4} x} \mathrm{d} x-\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x \cos x}{1+\sin ^{4} x} \mathrm{d} x \end{aligned} \\

令 x=\pi-t, 则

\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x \cos x}{1+\sin ^{4} x} \mathrm{d} x=-\int_{0}^{\frac{\pi}{2}} \frac{\sin t \cos t}{1+\sin ^{4} t} \mathrm{d} t=-\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1+\sin ^{4} x} \mathrm{d} x \\

\begin{aligned} \int_{0}^{\pi} \frac{|\sin x \cos x|}{1+\sin ^{4} x} \mathrm{d} x &=2 \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1+\sin ^{4} x} \mathrm{d} x\\ &=\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d} \sin ^{2} x}{1+\left(\sin ^{2} x\right)^{2}} \\ &=\left.\arctan \left(\sin ^{2} x\right)\right|_{0} ^{\frac{\pi}{2}}=\frac{\pi}{4} \end{aligned} \\

\int_{0}^{\pi} \frac{x|\sin x \cos x|}{1+\sin ^{4} x} \mathrm{d} x=\frac{\pi^{2}}{8} \\

定积分公式区间再现证明 第4篇

(前苏联大学生数学奧林匹克竞赛试题)

计算 \int_{-1}^{1} \frac{\mathrm{d} x}{\left(\mathrm{e}^{x}+1\right)\left(x^{2}+1\right)} .\\

解:取 a=-1, b=1, f(x)=\frac{1}{x^{2}+1}, g(x)=\frac{1}{\mathrm{e}^{x}+1},\\ 则有 f(-1)=f(x), g(-x)=\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1}\\

g(x)+g(-x)=1, \\

由区间再现公式

\int_{-1}^{1} \frac{\mathrm{d} x}{\left(\mathrm{e}^{x}+1\right)\left(x^{2}+1\right)}=\frac{1}{2} \int_{-1}^{1} \frac{\mathrm{d} x}{x^{2}+1}=\int_{0}^{1} \frac{\mathrm{d} x}{x^{2}+1}=\frac{\pi}{4} \\

定积分公式区间再现证明 第5篇

(第三届国际大学生数学竞赛试题,1996年)

设 n 为自然数,计算定积分 \int_{-\pi}^{\pi} \frac{\sin n x}{\left(1+2^{x}\right) \sin x} \mathrm{d} x .\\

解:取 a=-\pi, b=\pi, f(x)=\frac{\sin n x}{\sin x}, g(x)=\frac{1}{1+2^{x}},\\ 则有 f(-x)=f(x), g(-x)=\frac{2^{x}}{1+2^{x}},g(x)+g(-x)=1\\

由区间再现公式,可得

\int_{-\pi}^{\pi} \frac{\sin n x}{\left(1+2^{x}\right) \sin x} \mathrm{d} x=\frac{1}{2} \int_{-\pi}^{\pi} \frac{\sin n x}{\sin x} \mathrm{d} x=\int_{0}^{\pi} \frac{\sin n x}{\sin x} \mathrm{d} x \\

记 I_{n}=\int_{0}^{\pi} \frac{\sin n x}{\sin x} \mathrm{d} x,\\ 则当 n \geqslant 2 时,

I_{n}-I_{n-2}=\int_{0}^{\pi} \frac{\sin n x-\sin (n-2) x}{\sin x} \mathrm{d} x=2 \int_{0}^{\pi} \cos (n-1) x \mathrm{d} x=0 \\

故 I_{n}=I_{n-2} \quad(n=2,3, \cdots)\\ 由于 I_{0}=0, I_{1}=\pi, 所以

I_{n}=\left\{\begin{array}{ll} 0, & n \text { 为偶数 }, \\ \pi, & n \text { 为奇数. } \end{array}\right. \\

定积分公式区间再现证明 第6篇

(第六十六届美国大学生数学竞赛试题 (\mathrm{A}-5), 2005 年 )

计算 \int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} \mathrm{d} x .\\

解:令 x=\tan t, 则有

\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} \mathrm{d} x=\int_{0}^{\frac{\pi}{4}} \ln (1+\tan t) \mathrm{d} t=\int_{0}^{\frac{\pi}{4}} \ln (1+\tan x) \mathrm{d} x \\

取 a=0, b=\frac{\pi}{4}, f(x)=1, g(x)=\ln (1+\tan x),\\则有 f\left(\frac{\pi}{4}-x\right)=f(x)\\,

\begin{array}{c} g\left(\frac{\pi}{4}-x\right)=\ln \left[1+\tan \left(\frac{\pi}{4}-x\right)\right]=\ln \left(1+\frac{1-\tan x}{1+\tan x}\right)=\ln 2-\ln (1+\tan x) \\ g(x)+g\left(\frac{\pi}{4}-x\right)=\ln 2 \end{array} \\

由区间再现公式,可得

\int_{0}^{\frac{\pi}{4}} \ln (1+\tan x) \mathrm{d} x=\frac{\ln 2}{2} \int_{0}^{\frac{x}{4}} \mathrm{d} x=\frac{\pi}{8} \ln 2 \\

因此 \quad \int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} \mathrm{d} x=\frac{\pi}{8} \ln 2\\

定积分公式区间再现证明 第7篇

\int_{0}^{\pi} x f(\sin x) \mathrm{d} x=\pi \int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d} x \\

\text { 令 } u=\pi-x, \text { 则 }

\begin{aligned} \int_{0}^{\pi} x f(\sin x) \mathrm{d} x&=\int_{0}^{\pi}(\pi-u) f(\sin u) \mathrm{d} u\\ &=\pi \int_{0}^{\pi} f(\sin u) \mathrm{d} u-\int_{0}^{\pi} u f(\sin u) \mathrm{d} u\\ &=\pi \int_{0}^{\pi} f(\sin x) \mathrm{d} x-\int_{0}^{\pi} x f(\sin x) \mathrm{d} x \end{aligned}\\

移项可得

\begin{aligned} \int_{0}^{\pi} x f(\sin x) \mathrm{d} x=\frac{\pi}{2} \int_{0}^{\pi}f(\sin x) \mathrm{d} x=\frac{\pi}{2}\int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d} x+\int_{\frac{\pi}{2}}^{\pi} f(\sin x) \mathrm{d} x \qquad(\ast)\\ \end{aligned}\\

再u=x-\pi,则

\int_{\frac{\pi}{2}}^{\pi} f(\sin x) \mathrm{d} x= \int_{-\frac{\pi}{2}}^{0} f(\sin u) \mathrm{d} u =\int_{0}^{\frac{\pi}{2}} f(\sin t) \mathrm{d} t=\int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d} x \\

代入(\ast)式可得

\begin{aligned} &\int_{0}^{\pi} x f(\sin x) \mathrm{d} x=\frac{\pi}{2} \int_{0}^{\pi}f(\sin x) \mathrm{d} x=\frac{\pi}{2}\int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d} x+\int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d} x=\pi \int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d} x \end{aligned}\\

定积分公式区间再现证明 第8篇

(陕西省第八次大学生高等数学竞赛试题, 2010 年)

证明 :

I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{e}^{x} \sin ^{2} x \cos ^{2} x}{1+\mathrm{e}^{x}} \mathrm{d} x=\int_{0}^{\frac{x}{2}} \sin ^{2} x \cos ^{2} x \mathrm{d} x \\

并求 I 的值.

解:取 a=-\frac{\pi}{2}, b=\frac{\pi}{2}, f(x)=\sin ^{2} x \cos ^{2} x, g(x)=\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}\\

f(x)=f(-x), g(-x)=\frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}}=\frac{1}{1+\mathrm{e}^{x}}, g(x)+g(-x)=1 \\

I=\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{2} x \mathrm{d} x \\

又 \sin ^{2} x \cos ^{2} x 为 \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] 上的偶函数, 所以

\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{2} x \mathrm{d} x=2 \int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{2} x \mathrm{d} x \\

\begin{aligned} I &=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{2} x \mathrm{d} x=\frac{1}{4} \int_{0}^{\frac{\pi}{2}} \sin ^{2} 2 x\\ &=\frac{1}{8} \int_{0}^{\frac{\pi}{2}}(1-\cos 4 x) \mathrm{d} x \\ &=\frac{\pi}{16}-\frac{1}{8} \int_{0}^{\frac{\pi}{2}} \cos 4 x \mathrm{d} x=\frac{\pi}{16} \end{aligned} \\

参考文献:

潘杰, 苏化明. 若干数学竞赛试题的统一解法[J]. 大学数学, 2014(06):115-118.